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a b s t r a c t 

Convolutional neural network (CNN) methods have been successfully applied in single image super- 

resolution (SR). However, existing very deep CNN based SR methods face with the challenge of memory 

footprint and computational complexity for real-world applications. Besides, many previous methods lack 

flexible ability to emphasize local spatial informative areas, which is limited to recover the high-frequency 

detail of LR input. In this paper, to address these problems, we implement a spatial modulated residual 

unit (SMRU) upon the dilated residual unit and propose a recursively dilated residual network (RDRN) to 

reconstruct high-resolution (HR) images from low-resolution (LR) observations. The proposed RDRN can 

effectively exploit the contextual information over larger regions and pay attention to the high-frequency 

parts for image detail recovery. Furthermore, such spatial modulation mechanism (SPM) in SMRU can 

incorporate well with existing SR models for better reconstruction performance. Extensive evaluations 

on public benchmark datasets demonstrate that our proposed method achieves superior performance in 

terms of quantitative and qualitative assessments. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The objective of single image super-resolution (SR) is to re-

over a visual-pleasant high-resolution (HR) image from a given

ow-resolution (LR) image. Since that image SR can overcome the

imitation of image resolution in a small scale, it has been applied

n various applications, such as medical imaging [1] , face recog-

ition [2] , satellite imaging [3] , and other fields. The image SR

s an essentially ill-posed problem since there are multiple solu-

ions existed to reconstruct HR images from LR ones with non-

nvertible operations. Most recent methods typically resolve this

nverse problem by incorporating various image priors to constrain

he solution space. Tai et al. [4] propose an approach that recon-

tructs edges while recovering the image detail by adding learning-

ased detail synthesis to edge-directed image SR in a mutually

onsistent framework. In [5] , Zhang et al. present a non-local ker-

el regression method for image and video restoration tasks, which

xploits both the non-local self-similarity and local structural reg-

larity in natural images. 
∗ Corresponding author at: Institute of Information Science, Beijing Jiaotong Uni- 
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To reveal the high-frequency detail of reconstructed HR images,

ecently image SR methods employ example-based approaches.

ang et al. [6] propose a fast image SR method based on the

egression on in-place examples, which utilizes two fundamen-

al SR approaches of learning from external-examples and self-

xamples. In [7] , Huang et al. introduce a self-similarity driven

R algorithm, which can effectively increase the size of the lim-

ted internal dictionary without any external training images. Tim-

fte et al. [8] address the problem of image upscaling based on a

ictionary of low- and high-resolution exemplars, which combines

he best quality of the anchored neighborhood regression and sim-

le functions for image SR. By exploiting the connection between

parse coding based approaches and local linear regression, Schul-

er et al. [9] present a new approach for image SR via random

orests. To produce super-resolved LR images with better objec-

ive quality, Song et al. [10] introduce a gradient field sharpening

ransform that converts the blurry gradient field of upsampled LR

mage to a much sharper gradient field of original HR image. In-

pired by the success of convolutional neural networks (CNN) in

omputer vision field, Dong et al. [11] firstly propose to directly

earn an end-to-end mapping between low- and high-resolution

mages via fully convolutional neural network for image SR (SR-

NN), which shows notable superior accuracy compared with pre-

ious example-based methods. The authors further replaces the

https://doi.org/10.1016/j.neucom.2019.05.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.05.042&domain=pdf
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bicubic upsampling operation with one deconvolutional layer at

the end of the network for fast image SR (FSRCNN) [12] , which

achieves a high acceleration without the loss of restoration qual-

ity. Kim et al. [13] improve the performance over SRCNN via very

deep convolutional network with residual learning (VDSR). To ease

the difficulty of training very deep network and control the model

parameters, Kim et al. [14] further propose a deeply-recursive con-

volutional network (DRCN), which uses recursive-supervisions and

skip connections to improve the performance of predicted HR im-

ages. Recently, the major trend of CNN based image SR algorithms

[15–17,17–19] is stacking more layers to boost the SR performance.

Mao et al. [15] introduce a deep convolutional encoder-decoder

network which uses symmetrically lines to combine the convolu-

tional and deconvolutional layers with skip-layer connections for

image restoration. In [17] , Tai et al. propose a deep recursive resid-

ual network (DRRN), which recursively learns the residual image

to control the model parameters while increasing the depth (up to

52 layers) of the networks. Zhang et al. [20] especially propose a

400-layers channel-wise attention based residual network (RCAN)

for accurate image SR. 

Due to the contextual information spreading over very large re-

gions, the information contained in small patches are usually not

sufficient to restore the high-frequency detail. It is necessary to ex-

pand the receptive field of networks to exploit the contextual in-

formation over larger regions. One option is to increase the kernel

size of convolutional layers to enlarge the receptive field. Neverthe-

less, simply increasing the filter size can involve more weight pa-

rameters and computational cost. In addition, according to existing

popular networks [21,22] , stacking more 3 × 3 convolutional layers

can incorporate more non-linear rectification layers to make the

model more discriminative. As mentioned above, another option is

stacking more convolutional layers to obtain large receptive field.

Unfortunately, utilizing too many convolutional layers can also in-

evitably increase the parameters and demand more memory space.

Inspired the recursive learning in [14] , there are some methods

[17,23,24] combine the recursive learning strategy with deep net-

works to increase the depth without introducing additional weight

parameters. Motivated by the characteristic that dilated convolu-

tion can expand the receptive field while keeping the small ker-

nel size of the standard convolution, which means that we can use

relative fewer convoltional layers to effectively exploit the contex-

tual information over larger regions. Besides, there are different

types of information across the space in LR inputs and deep fea-

tures, which have different contributions for high-frequency detail

recovery. Most previous CNN-based methods [13,17] treat the LR

features equally in networks and lack flexible ability to emphasize

the local spatial informative areas. Although generative adversar-

ial networks (GAN) [19] can help to recover a photo-realistic HR

image, sometimes the local detail in HR images may not always

consistent with the LR images. 

To solve the drawbacks mentioned above, we propose a deep

recursively dilated residual network (RDRN) for fast and accurate

image SR. Our proposed RDRN mainly consists of a recursion in

recursion module (RIR), a detail refinement module (DRM) and an

upscale module. The RIR module is composed of multiple cascad-

ing spatial modulated residual units (SMRU) implemented upon

the dilated residual unit(DRU). The SMRU first employs two dilated

convolutional layer to extract the input features with larger recep-

tive field and then introduces a spatial modulated unit (SPU) to

model the contextual information over local representations within

each feature map. Besides, recursive learning is adopted in these

SMRUs to efficiently reuses the weight parameters while increasing

the depth of networks. Then, after the effective f eature extraction

via RIR, we employ a DRM composed of multiple convolutional lay-

ers to refine the local detail of input features for highly accurate

image SR. After that, an upscale module is adopted to aggregate
he obtained the residual representations to generate HR residual

mages. Finally, we implement an element-wise addition operation

n the HR residual images and the bicubic amplified LR images to

enerate the SR results. 

In summary, the main contributions of this work can be sum-

arized as follows: 

• We propose a novel deep recursively dilated residual network

(RDRN) to effectively exploit the contextual information over

larger regions and emphasize meaningful features for fast and

accurate image SR via recursive and residual learning schemes. 

• In the proposed RDRN, we present a RIR module composed

of multiple SMRUs, which combines the dilated convolution

and spatial modulation mechanism (SPM) to extract more high-

frequency features. The recursive learning in RIR can efficiently

train our dilated network in deeper visions without introducing

additional weight parameters. 

• We present a spatial modulated unit (SPU), which incorporates

the SPM with the dilated residual unit to model the contextual

information over local representations within each feature map.

Such SPM can incorporates well with exising CNN based models

to obtain better SR results. Our method demonstrates superior

SR performance in common benchmarks compared with many

state-of-the-art methods. 

The rest parts of this paper are organized as follows.

ection 2 briefly introduces related work in image SR. Section 3 il-

ustrates the detail of our proposed RDRN. The experimental re-

ults on several benchmarks are presented in Section 4 . The con-

lusion of this paper is summarized in Section 5 . 

. Related work 

.1. Deep learning based image SR 

Deep learning methods have been widely used in computer vi-

ion tasks including image classification [21,22] , image segmenta-

ion [25] , and object detection [26] . Recent image SR methods tend

o build end-to-end CNN models to learn the mapping function

rom LR to HR images using large training datasets. Dong et al.

11] first introduce a three-layer CNN to conduct the feature ex-

raction and learn the non-linear mapping function between LR

nd HR patches for image SR. Kim et al. [13] adopt the resid-

al learning and deeper layers to improve the reconstruction ac-

uracy. The authors [14] further additionally utilize the recursive

earning and multi-path skip connections to boost the SR per-

ormance. Therefore, most CNN based methods employ different

inds of residual learning strategy [16–18,27] to achieve remark-

ble improvement in image SR. Motivated by the densely con-

ected network (DenseNet) [28] , some methods [23,29,30] utilize

he densely-liked connections to fully exploit the hierarchical fea-

ures for image SR. 

Although the increase in depth can enlarge the receptive field

nd improve the discriminative capacity for learning more com-

lex LR-to-HR mappings, this approach dramatically suffers from

he enormous parameters and harder training process. There are

ome methods [14,17,24] adopt the recursive learning strategy to

itigate the difficulty of training very deep networks and control

he model parameters. DRCN [14] introduces a recursive layer into

he network and repeatedly applies the same convolutional layer

o reduce the number of parameters. Tai et al. [17] introduce the

lobal residual learning (GRL) and local residual learning (LRL) in

RRN to solve the gradients vanishing/exploding problem. The GRL

earns the residual image from the input and output of the net-

orks. The LRL is utilized to carry the rich features to later layers. 
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Fig. 1. The receptive fields of dilted convolution with 3 × 3 kernel size and different rates. (a). Standard convolution corresponds to dilated convolution with r = 1 . (b) The 

receptive field of 7 × 7 produced by the dilated convolution with r = 2 . (c). The receptive field of 15 × 15 produced by the dilated convolution with r = 4 . 

Fig. 2. The overall framework of our proposed RDRN for image SR, which is mainly composed of three components: a recursion in recursion (RIR) module, a detail refinement 

module (DRM) and an upscale module. 
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.2. Dilated convolution 

The main idea of dilated convolution is to insert “holes” be-

ween pixels in convolutional kernels to exponentially expand the

eceptive fields without losing resolution in deep CNNs, such as

mage classification [25] , image segmentation [31–33] . For a con-

olutional filter with the size of k × k and dilation rate r , the

ize of resulted dilated convolutional filter is k d × k d , where k d =
 + (k − 1) × (r − 1) . As shown in Fig. 1 , a dilated convolution with

lter size of 3 × 3 and r = 1 followed by a dilated convolution with

he same kernel and r = 2 can produce the receptive field of 7 × 7

ith identical parameters, which demonstrates that we can adopt

ifferent dilation rates to enlarge the receptive field while keeping

he merits of small filters. The standard convolution corresponds

o the dilated convolution with r = 1 . From Fig. 1 , we can find that

he number of parameters associated with each layer is identical.

he receptive field grows exponentially while the number of pa-

ameters grows linearly. 

To preserve the spatial resolution in deep CNNs for image clas-

ification, Yu et al. [25] propose a dilated residual network (DRN)

pon the original residual network (ResNet) [22] , which uses di-

ated convolution to increase the receptive field of higher layers.

he authors remove the downsampling layers of the two final

roups in ResNet and replace these layers by dilated convolutional

ayers. The converted DRN has the same number of parameters and

ayers as the ResNet yet with higher resolution output and more

ccurate classification. For image SR, there are also some meth-

ds [34–36] employ dilated convolution to effectively expand the

eceptive field of networks without additional computational com-

lexity and memory consumption. 

. Proposed method 

In this section, we first provide a global view of the proposed

etwork RDRN. Then, we elaborate each component of the pro-

osed RDRN, which is simply illustrated in Fig. 2 . The proposed

DRN mainly consists of three components: a recursion in re-

ursion module (RIR), a detail refinement module (DRM) and an
pscale module. Finally, we introduce the loss function for training

ur RDRN. 

.1. Overview 

Let x ∈ R 

H×W ×C denotes the LR input image, and y ∈ R 

sH×sW ×C 

enotes its original corresponding HR image. The degradation pro-

ess of y can be formulated 

 = (D � y ) ↓ s + n (1)

here D denotes various blurring degradations and ↓ s denotes the

icubic downsampling operation with scale factor s. n is the addi-

ional noise. Our goal is to restore the HR image from an observed

R image x . Therefore, as illustrated in Fig. 2 , our proposed RDRN

akes the LR image x as input and predict the HR image 

ˆ 
 H = F SR (x ) (2) 

here F SR ( ·) denotes the mapping function for LR to HR images of

DRN. ˆ x H ∈ R 

sH×sW ×C is the estimated HR image. 

.2. Recursion in recursion module 

Given an LR input x , we first use a standard convolutional layer

ith the kernel size of 3 × 3 and stride 1 to extract the LR features

 0 = f e (x ) (3) 

here f e ( ·) denotes the feature extraction function and x 0 is the

xtracted feature fed into the RIR module. 

.2.1. Spatial modulated residual unit 

The LR input and features contains low-frequency parts and

igh-frequency areas. The high-frequency areas usually contains

bundant edge or texture detail, while the smooth areas have more

ow-frequency information. These types of features have differ-

nt contributions for the high-frequency detail recovery. Therefore,

n the RIR module, we present a spatial modulated residual unit

SMRU) which is implemented on a dilated residual unit (DRU)

25] . The start point of DRU is from the residual unit in ResNet
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Fig. 3. The convertion of the residual unit into DRU and the SMRU in RDRN. (a). The residual unit consists of two standard convolutional layers in ResNet. (b) The converted 

DRU which consists of two dilated convolutional layers in RDN, where the “Dconv” denotes dilated convolution. (c) The proposed SMRU in our RDRN, which consists of two 

dilated convolutional layers and a spatial modulation unit. 

Fig. 4. The structure of the k th recursive block which consists of multiple SRMUs 

in the proposed RIR module. Here, we simply depict three SMRUs in the recursive 

block. 
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[22] . The converted DRN has the same number of parameters and

layers as the ResNet yet with higher resolution output. The original

residual unit is depicted in Fig. 3 (a). Fig. 3 (b) simply illustrates the

conversion from the residual unit to DRU. In our proposed SMRU,

we first use two dilated convolutional layers to exploit the con-

textual information with larger receptive field and small kernel

size 3 × 3 

x m 

= f 2 m 

(τ ( f 1 m 

(x m −1 ))) (4)

where x m −1 denotes the output of the (m − 1) th SMPU and serves

as the input of the m 

th SMRU. f m 

( ·) and f m −1 (·) represent the con-

volution operation of the two dilated layers, respectively. We use

the parametric rectified linear unit (PReLU) [37] as activation func-

tion τ ( ·). 
From the viewpoint of image SR, the importance of the chan-

nels varies by the spatial regions. Each feature map has differ-

ent sense depending on the convolutional filters. In the case of

edges and textures, those channels from complex filters perform

more important role for image detail recovery. In order to make

our proposed network pay more attention to informative regions,

we introduce a spatial modulation mechanism (SPM) which uses a

depthwise convolution to capture the spatial relations. The depth-

wise convolution applies a single filter to each input channel to

modulate the spatial information within each feature map. Then,

as shown in Fig. 3 (c), we employ a sigmoid function to normalized

the modulated features between a range from 0 to 1, and then we

conduct the spatial-wise multiplication with the features fed into

the spatial modulated unit (SPU). Finally, we adopt local residual

learning to obtain the final output ˆ x m 

of the SMRU 

ˆ x m 

= x m −1 + σ ( f 3 m 

(x m 

)) � x m 

(5)

where f 3 m 

(·) denotes the depthwise convolution operation and σ ( ·)
denotes the sigmoid function. � represents the element-wise mul-

tiply operation. 

3.2.2. Recursive block 

In the RIR module, we share the weight parameters within

each SMRU. Specifically, as sketched in Fig. 4 , we form M SMRU as

a recursive block and employ the shared-source skip connections

to carry rich image detail to late layers and help gradient flow.
herefore, for the k th recursive block, we have 

 

M 

k = B k (x M 

k −1 ) 

= R 

M 

k (R 

M−1 
k 

(... (R 

2 
k (R 

1 
k (x M 

k −1 ))) ... )) (6)

here x M 

k −1 
and x M 

k 
denotes the output of the (k − 1) th and k th 

ecursive block. R 

M 

k 
(·) denotes the mapping function of the M 

th 

MRU in the k th recursive block. B k (·) denotes the mapping func-

ion of the k th block. Supposing there are K recursive blocks in the

IR module, the first block B 1 is denoted as recursion 1. As shown

n Fig. 2 , the former recursion is employed as an unit stacked with

urrent block to make up a new recursion, which means recursion

n recursion (RIR). Therefore, the output ˆ x K of our proposed RIR

odule can be represented as 

ˆ 
 K = f RIR (x 0 ) = x M 

K + x 0 

= B K ( ̂  x K−1 ) + x 0 

= R 

M 

K (R 

M−1 
K (... (R 

2 
K (R 

1 
K ( ̂  x K−1 ))) ... )) + x 0 (7)

here f RIR ( ·) denotes the mapping function of the RIR module and

ˆ  K−1 is the output of the (M − 1) th recursion. 

.3. Detail refinement module 

Since dilated convolution pads zeros between two pixels in

he convolutional kernel, according to [25] , the receptive field can

nly cover the area with checkerboard pattern, which can cause

ridding artifacts. To address this problem, we design a detail

efinement module (DRM) to fine-tune the detail of the features

roduced by RIR. As illustrated in Fig. 2 , considering that skip

onnections can propagate the gridding artifacts from RIR module

o later layers, in our proposed DRM, 4 standard convolutional

ayers are simply stacked without any skip connection to solve

his problem 

 R = f D ( ̂  x K ) (8)

here f D ( ·) denotes the function of DRM, and x R is the output of

RM. 

.4. Upscale module 

After obtaining the refine LR residual features, we stack an up-

cale module in the HR space. In the upscale module, we uti-

ize the sub-pixel magnification algorithm in [38] to increase the

esolution of the feature maps. Then we adopt a convolutional

ayer with 3 output channels to reconstruct the HR residual im-

ge. Finally, we conduct the global residual learning between the

enerated HR residual image and the bicubic amplified LR input

o obtain the final SR results ˆ x H . This process can be described as

ollows: 

 H = PS ( f 1 u (x R )) 

ˆ 
 H = f 2 u (x H ) + x B (9)

here f 1 u (·) denotes the mapping function of the convolutional

ayer with H × W × s 2 C channels before the pixel shuffle operation.
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Table 1 

Results of different variant dilation rate schemes with a scale factor of 4. The Text 

indicates the best performance. 

Dilation scheme Receptive field Set5 Set14 

1-2-1 65 × 65 31.35 / 0.883 28.03 / 0.767 

1-2-3 97 × 97 31.39 / 0.883 28.05 / 0.768 

1-3-4 129 × 129 31.41 / 0.884 28.08 / 0.768 

1-4-8 235 × 235 31.22 / 0.880 27.96 / 0.765 

RDRN-ND 49 × 49 31.31 / 0.882 28.01 / 0.766 

Table 2 

Results of RDRN with different values of K and M for 2 × SR. The text indicates the 

best performance. 

Structure Parameters PSNR / SSIM 

K 2 M 6 456K 37.47 / 0.957 

K 3 M 4 535K 37.58 / 0.959 

K 3 M 6 535K 37.65 / 0.960 

K 4 M 4 677K 37.67 / 0.960 

K 3 M 8 535K 37.73 / 0.961 
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K

he pixel shuffle operator PS is used to rearrange the elements

f a H × W × s 2 C tensor to a tensor x H ∈ R 

sH×sW ×C . f 2 u (·) represents

he convolution operation of the final reconstruction layer. x B is

icubic upsampled HR image from the LR input x . 

.5. Training 

Given a training set [ x i , ̃  x i ] 
N 
i =1 

, where N is the number of train-

ng patches and ˜ x i is the ground truth of the LR patch x i . We train

ur RDRN with L1 loss. The loss function of the proposed network

ith the parameter set � is 

 (�) = 

1 

N 

N ∑ 

i =1 

‖ F SR (x i ) − ˜ x i ‖ 1 

= 

1 

N 

N ∑ 

i =1 

‖ ̂

 x H − ˜ x i ‖ 1 (10) 

. Experiments 

In this section, we evaluate the performance of our model on

everal datasets. We first describe the datasets which are used for

raining and testing our models. Next, we introduce the implemen-

ation detail in our experiments. Then we investigate the effective-

ess of different com ponents in our proposed RDRN for image SR.

inally, we compare the proposed RDRN with several state-of-the-

rt methods on subjective assessment, objective assessment, and

nference time. 

.1. Datasets 

As for training, following [18] , we use a high-quality (2K resolu-

ion) dataset DIV2K [39] as our training data. DIV2K includes 800

mages training images, 100 validation images and 100 testing im-

ges. The training images is augmented by flipping horizontally or

ertically, randomly rotating 90 ◦, 180 ◦, and 270 ◦, and scaling in a

ange from 0.6 to 0.9. For testing, we evaluate our proposed RDRN

lgorithm on four public benchmark datasets: Set5 [40] , Set14 [41] ,

SD100 [42] , and Urban100 [7] . The SR results are evaluated with

wo subjective metrics: PSNR [43] and SSIM [44] on Y channel ( i.e. ,

uminance) of transformed YCbCr space and compare the perfor-

ance on 2 × , 3 × , and 4 × SR. 

.2. Implementation detail 

In our proposed RDRN, except the upscale module, all of the

tandard convolutional layers and dilated convolutional layers con-

ist of 64 filters with the kernel size of 3 × 3 and stride 1. In the

MRU, we set 3 × 3 as the size of depthwise convolutional layer. In

he upscale module, the first convolutional layer consists 64 × s × s

lters corresponding the scale factor s with the kernel size of 3 × 3

nd stride 1. The final reconstruction convolutional layer has 3 fil-

ers, as we output color images. To produce the LR images, we use

he bicubic interpolation to downscale the original HR images by

ATLAB imresize function. In each training batch, we randomly ex-

ract 20 LR RGB patches with the size of 64 × 64 as the input fed

nto our proposed network. We train our model using the Adam

ptimizer [45] with β1 = 0 . 9 , β2 = 0 . 999 , and ε = 10 −8 . For weight

nitialization, we use the method introduced in He et al. [22] . The

nitial learning rate is set to 10 −4 for all layers and decreases to

alf every 200 epochs. We use PyTorch [46] on a NVIDIA Titan Xp

PU for training and testing our models. 

.3. Ablation study 

In this section, we first investigate the effectiveness of dilation

chemes using in our models for image SR. Then, we investigate
nother two basic network parameters: the number of recusions K

nd the number of SMRUs M in each recursion block. Finally, we

tudy the effect of the proposed SPM, RIR, and DRM in the SMRU. 

.3.1. Effectiveness of dilation rate 

We conduct experiments on the impact of receptive field for

mage SR. With the same depth of networks, the receptive fields

re controlled by the dilation rate where a higher dilation rate r

an obtain larger receptive field. We employ a baseline model of

ur proposed RDRN, which contains 3 recursions and each recur-

ive block is composed of 4 SMRUs. The SMRUs in each recursive

lock share the same weight parameters and dilation rate. We have

esearched the dilation scheme as follows: 1-2-1, 1-2-3, 1-3-4, and

-4-8. For example 1-2-1, which has the first block with r = 1 , the

econd block with r = 2 , and the third with r = 1 . We adopt the

odel without dilation convolution (denote as RDRN-ND) as a ref-

rence. All of the models are evaluated on Set5 and Set14 for 4 ×
R. The results are shown in Table 1 , where the receptive fields in

able 1 calculated on the layers in RIR module. We can observe

hat larger receptive field can achieve higher SR performance and

he scheme 1-3-4 achieves the best performance. Besides, we can

lso find that the scheme 1-4-8 obtain the largest receptive field

ut achieves lower PSNR than other three schemes. The reason is

hat when we use the dilated convolution to enlarge the receptive

eld, the feature maps should be padded which is consistent with

he dilation rate r to maintain the same resolution of feature maps

t each layer. When r becomes larger in top layers, the pixels from

he input can be very sparse, which can destroy the correlations

etween pixels and then missing the local information. Therefore,

e adopt the framework with the dilation scheme 1-3-4 as the fi-

al arrangement in our RDRN. 

.3.2. Study of K and M 

The number of recusions K and the number of SMRUs M can

irectly affect the parameters and layers of the network and de-

ermines the model parameter and the SR performance. Now, we

tudy on the effects of K and M for image SR. Table 2 shows the

esults of our models with different K and M for 2 × SR on Set5 .

e can observe that larger K or M would lead to higher perfor-

ance. This is mainly because that the network becomes deeper

ith larger K or M . Besides, benefiting from the local recursive

earning in RIR module, the models which employ the same num-

er of recursions involve the same amount of weight parameters

hile increasing the values of M . As a result, we chose the model

 3 M 8 as the best structure for comparing with other methods. 
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Fig. 5. Visual comparison of the LapSRN and LapSRN + for 4 × SR on the Urban100 datasets, where the LapSRN + can produce clearer local texture and more straight lines. 

Fig. 6. Visual comparison on the “ppt3” image from Set14 [41] for × 4 scale. The lines are straightened and sharpened in our result, whereas other methods give blurry 

boundary. 

Fig. 7. Visual comparison on the “253027” image from BSD100 [42] for 3 × SR. The stripes on the zebra are more clear and natural in our results, whereas other methods 

produce blurry content. 
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Table 3 

Investigation of SPM, RIR, and DRM for 2 × SR on Set5 . The Text Indicates the Best Performance. 

Structure Different combinations of SPM, RIR, and DRM 

SPM × � × × � � × � 

RIR × × � × � × � � 

DRM × × × � × � � � 

Weights shared No No Yes No Yes No Yes Yes 

PSNR 37.73 37.75 37.54 37.79 37.59 37.86 37.70 37.73 

Parameters 2037K 2042K 373K 2075K 387K 2190K 520K 535K 

Table 4 

Quantitative evaluation of state-of-the-art SR algorithms: average PSNR/SSIM for scale factors 2, 3 and 4. Bold text indicates the best performance and italic text indicates 

the second best performance. 

Methods Scale Set5 Set14 BSD100 Urban100 

Bicubic 2 33.64 / 0.929 30.31 / 0.869 29.55 / 0.843 26.88 / 0.841 

SRCNN [11] 2 36.35 / 0.952 32.29 / 0.905 31.15 / 0.885 29.10 / 0.890 

VDSR [13] 2 37.53 / 0.959 33.15 / 0.913 31.90 / 0.896 30.77 / 0.914 

DRCN [14] 2 37.63 / 0.959 32.98 / 0.913 31.85 / 0.894 30.76 / 0.913 

LapSRN [16] 2 37.52 / 0.959 33.08 / 0.913 31.80 / 0.895 30.41 / 0.910 

DRRN [17] 2 37.74 / 0.959 33.23 / 0.914 32.05 / 0.897 31.23 / 0.919 

IDN [27] 2 37.83 / 0.960 33.30 / 0.915 32.08 / 0.899 31.27 / 0.920 

RDRN (our) 2 37.73 / 0.961 33.25 / 0.915 32.08 / 0.898 31.25 / 0.920 

RDRN + (our) 2 37.86 / 0.961 33.31 / 0.916 32.12 / 0.901 31.30 / 0.921 

Bicubic 3 30.39 / 0.868 27.64 / 0.776 27.21 / 0.740 24.46 / 0.736 

SRCNN [11] 3 32.76 / 0.908 29.41 / 0.823 28.41 / 0.787 26.24 / 0.800 

VDSR [13] 3 33.66 / 0.921 29.77 / 0.834 28.83 / 0.798 27.14 / 0.829 

DRCN [14] 3 33.82 / 0.922 29.76 / 0.833 28.80 / 0.797 27.15 / 0.828 

LapSRN [16] 3 33.78 / 0.921 29.87 / 0.833 28.81 / 0.797 27.06 / 0.827 

DRRN [17] 3 34.03 / 0.924 29.96 / 0.835 28.95 / 0.800 27.53 / 0.838 

IDN [27] 3 34.11 / 0.925 29.99 / 0.835 28.95 / 0.801 27.42 / 0.836 

RDRN (our) 3 34.10 / 0.925 29.99 / 0.836 28.96 / 0.801 27.53 / 0.838 

RDRN + (our) 3 34.17 / 0.928 30.05 / 0.837 29.09 / 0.803 27.60 / 0.839 

Bicubic 4 28.42 / 0.810 26.00 / 0.703 25.96 / 0.669 23.15 / 0.659 

SRCNN [11] 4 30.48 / 0.862 27.50 / 0.752 26.90 / 0.712 24.16 / 0.707 

VDSR [13] 4 31.35 / 0.884 28.02 / 0.768 27.29 / 0.725 25.18 / 0.753 

DRCN [14] 4 31.53 / 0.885 28.02 / 0.767 27.23 / 0.723 25.14 / 0.751 

LapSRN [16] 4 31.54 / 0.885 28.19 / 0.772 27.32 / 0.728 25.21 / 0.756 

DRRN [17] 4 31.68 / 0.889 28.21 / 0.772 27.38 / 0.728 25.44 / 0.763 

IDN [27] 4 31.82 / 0.890 28.25 / 0.773 27.41 / 0.730 25.41 / 0.763 

RDRN (our) 4 31.77 / 0.890 28.26 / 0.774 27.43 / 0.731 25.43 / 0.763 

RDRN + (our) 4 31.89 / 0.891 28.29 / 0.774 27.51 / 0.732 25.48 / 0.764 
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.3.3. Effectiveness of RIR, DRM, and SPM 

Now we turn our attention to the RIR, DRM, and the SPM in

IR. We research on the effects of these components for image

R. We first train models without any type of the three compo-

ents. Then we investigate different combination of these compo-

ents. All of the models adopt the same dilation scheme 1-3-4 and

he same structure K 3 M 8. There are 8 different combinations and

he results for scale factor 2 on Set5 are shown in Table 3 . It is

oted that the models without RIR means the same structure as

thers but no recursing learning. As shown in Table 3 , we can

nd that the SPM or DRM can help to achieve higher PSNR per-

ormance. When we add the two components to the RIR structure

an achieve the highest PSNR score but very large amount of pa-

ameters. We can also observe that the model with the all three

omponents and weight sharing can achieve acceptable SR perfor-

ance but much fewer parameters. To balance the trade-off be-

ween the parameters and SR performance, we combine the re-

ursive learning with the three components as our final model,

ermed as RDRN. Besides, we chose the model which also contains

he three components but no recursive learning strategy as the en-

ance vision of RDRN, termed as RDRN + (the model with 2190K

arameters in Table 3 ). 

To demonstrate the proposed SPM can incorporate well with

xisting CNN based SR models for better SR performance, we add

he SPM in the LapSRN [16] at the end of the feature extraction

odule within each scale level. Therefore, we add two SPUs in

apSRN for 4 × SR, termed as LapSRN + . We show the visual com-

arison of the two networks for 4 × SR on BSD100 dataset. As
hown in Fig. 5 , we can see that the LapSRN + can recover the HR

mages with clearer local texture detail and sharper edges com-

ared with the original LapSRN, which demonstrates that the pro-

osed SPM can help to enhance the discriminative capacity of net-

orks for high-frequency detail recovery. 

.4. Comparing with the state-of-the-arts 

In this section, we compare the two models of our proposed

ethod, i.e. RDRN and RDRN + , with several state-of-the-art meth-

ds which include SRCNN [11] , VDSR [13] , DRCN [14] , LapSRN [16] ,

RRN [17] , and IDN [27] . Table 4 summarizes the quantitative re-

ults on the four benchmarks for 2 × , 3 × , and 4 × SR in terms

f PSNR and SSIM. Table 4 summarizes the quantitative results on

he four benchmarks, which illustrates that the RDRN can achieve

he promising PSNR and SSIM performance compared with other

ethods. Besides, the RDRN + significantly outperforms the state-

f-the-art method IDN [27] in a considerable margin. 

To fully investigate how the models perform in terms of visual

uality, some promising results from several state-of-the-art meth-

ds with larger scales on Set14 [41] , BSD100 [42] , and Urban100

7] are visualized in Figs. 6–8 . It is observed that our proposed

ethod can reconstruct the lines, texture and stripes more accu-

ately and clearly, which demonstrates that our method is able to

estore the HR images with preserving more high-frequency detail

hile other methods reconstruct the HR images with more blurry

ontents. 
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Fig. 8. Visual comparison on the “img_063” image from Urban100 [7] for 4 × SR. The boundary is sharper in our results, whereas other methods give blurry lines. 

Fig. 9. PSNR performance versus runtime (evaluated in seconds). The results are 

evaluated on the Set5 dataset for 4 × SR. The proposed RDRN achieves the compa- 

rable performance with the fastest reconstruction speed. The RDRN + achieves the 

highest PSNR with acceptable execution time. 
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As for inference time, we use the public codes of the compared

algorithms to evaluate the runtime on the machine with 3.4GHz

Intel i7 CPU (128G RAM) and NVIDIA Titan Xp GPU (12G mem-

ory). Fig. 9 shows the shows the trade-offs between the execu-

tion time and PSNR performance on the Set5 dataset for 4 × SR.

As shown in Fig. 9 , our proposed models RDRN achieves the best

runtime performance with comparable SR results. Besides, the en-

hancement vision RDRN + of our proposed method can stride the

balance between the reconstruction accuracy and runtime, which

outperforms the state-of-the-art method IDN [27] by a consider-

able margin. 

5. Conclusion 

In this paper, we propose a novel deep recursively dilated resid-

ual network (RDRN) to effectively exploit the contextual informa-

tion over larger regions and emphasize local meaningful features

for fast and accurate image SR via recursive and residual learning
chemes. We present a spatial modulated unit (SPU), which incor-

orates the spatial modulation mechanism (SPM) with the dilated

esidual unit to model the contextual information over local rep-

esentations within each feature map. Such SPM can incorporates

ell with exising CNN based models to obtain better SR results.

he extensive experiments demonstrate that the proposed model

s feasible and desirable for real-time applications. 
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